Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Hepatology ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231043

RESUMO

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and DILI, particularly acetaminophen toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH AND RESULTS: We analyzed liver tissue from 2 independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8 + T cells were characterized by zonation toward necrotic regions and an activated gene expression signature. In murine acetaminophen-induced liver injury, intravital microscopy revealed zonation of CD8 + but not CD4 + T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in the liver as well as a broadly activated phenotype of hepatic CD8 + T cells. In 2 mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8 + T cells, but regulated their activation profile potentially through egress to lymphatics. Ccr7-/- CD8 + T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8 + T cells to the liver, and depletion of CD8 + T cells attenuated liver damage in mice. CONCLUSIONS: Our study demonstrates the involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.

3.
Science ; 381(6662): eabq5202, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676943

RESUMO

Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.


Assuntos
Infecções Transmitidas por Sangue , Células Gigantes , Células de Kupffer , Cirrose Hepática , Animais , Humanos , Camundongos , Células Gigantes/imunologia , Células Gigantes/microbiologia , Células de Kupffer/imunologia , Células de Kupffer/microbiologia , Cirrose Hepática/imunologia , Cirrose Hepática/microbiologia , Cirrose Hepática/patologia , Infecções Transmitidas por Sangue/imunologia , Modelos Animais de Doenças
4.
J Hepatol ; 79(4): 1025-1036, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348790

RESUMO

BACKGROUND & AIMS: Ductular reaction expansion is associated with poor prognosis in patients with advanced liver disease. However, the mechanisms promoting biliary cell proliferation are largely unknown. Here, we identify neutrophils as drivers of biliary cell proliferation and the defective wound-healing response. METHODS: The intrahepatic localization of neutrophils was evaluated in patients with chronic liver disease. Neutrophil dynamics were analyzed by intravital microscopy and neutrophil-labeling assays in DDC-treated mice. Neutrophil depletion or inhibition of recruitment was achieved using a Ly6g antibody or a CXCR1/2 inhibitor, respectively. Mice deficient in PAD4 (peptidyl arginine deiminase 4) and ELANE/NE (neutrophil elastase) were used to investigate the mechanisms underlying ductular reaction expansion. RESULTS: In this study we describe a population of ductular reaction-associated neutrophils (DRANs), which are in direct contact with biliary epithelial cells in chronic liver diseases and whose numbers increased in parallel with disease progression. We show that DRANs are immobilized at the site of ductular reaction for a prolonged period of time. In addition, liver neutrophils display a unique phenotypic and transcriptomic profile, showing a decreased phagocytic capacity and increased oxidative burst. Depletion of neutrophils or inhibition of their recruitment reduces DRANs and the expansion of ductular reaction, while mitigating liver fibrosis and angiogenesis. Mechanistically, neutrophils deficient in PAD4 and ELANE abrogate neutrophil-induced biliary cell proliferation, thus indicating the role of neutrophil extracellular traps and elastase release in ductular reaction expansion. CONCLUSIONS: Overall, our study reveals the accumulation of DRANs as a hallmark of advanced liver disease and a potential therapeutic target to mitigate ductular reaction and the maladaptive wound-healing response. IMPACT AND IMPLICATIONS: Our results indicate that neutrophils are highly plastic and can have an extended lifespan. Moreover, we identify a new role of neutrophils as triggers of expansion of the biliary epithelium. Overall, the results of this study indicate that ductular reaction-associated neutrophils (or DRANs) are new players in the maladaptive tissue-healing response in chronic liver injury and may be a potential target for therapeutic interventions to reduce ductular reaction expansion and promote tissue repair in advanced liver disease.


Assuntos
Hepatopatias , Neutrófilos , Animais , Camundongos , Fígado , Proliferação de Células , Epitélio
5.
Hepatol Commun ; 7(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972392

RESUMO

BACKGROUND: Acute liver failure (ALF) is characterized by rapid clinical deterioration and high mortality. Acetaminophen (APAP or paracetamol) overdose is a leading cause of ALF, resulting in hepatocellular necrosis with subsequent inflammation, inflicting further liver damage. Infiltrating myeloid cells are early drivers of liver inflammation. However, the role of the abundant population of liver-resident innate lymphocytes, which commonly express the chemokine receptor CXCR6, is incompletely understood in ALF. METHODS: We investigated the role of CXCR6-expressing innate lymphocytes using the model of acute APAP toxicity in mice deficient in CXCR6 (Cxcr6gfp/gfp). RESULTS: APAP-induced liver injury was strongly aggravated in Cxcr6gfp/gfp mice compared with wild-type counterparts. Immunophenotyping using flow cytometry revealed a reduction in liver CD4+T cells, natural killer (NK) cells, and most prominently, NKT cells, whereas CXCR6 was dispensable for CD8+ T-cell accumulation. CXCR6-deficient mice exhibited excessive neutrophil and inflammatory macrophage infiltration. Intravital microscopy revealed dense cellular clusters of neutrophils in necrotic liver tissue, with higher numbers of clustering neutrophils in Cxcr6gfp/gfp mice. Gene expression analysis linked hyperinflammation in CXCR6 deficiency to increased IL-17 signaling. Although reduced in overall numbers, CXCR6-deficient mice had a shift in NKT cell subsets with increased RORγt-expressing NKT17 cells as a likely source of IL-17. In patients with ALF, we found a prominent accumulation of IL-17-expressing cells. Accordingly, CXCR6-deficient mice lacking IL-17 (Cxcr6gfp/gfpx Il17-/-) had ameliorated liver damage and reduced inflammatory myeloid infiltrates. CONCLUSIONS: Our study identifies a crucial role of CXCR6-expressing liver innate lymphocytes as orchestrators in acute liver injury containing IL-17-mediated myeloid cell infiltration. Hence, strengthening the CXCR6-axis or downstream inhibition of IL-17 could yield novel therapeutics in ALF.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Interleucina-17 , Receptores CXCR6 , Animais , Camundongos , Acetaminofen/toxicidade , Inflamação , Células Matadoras Naturais , Receptores CXCR6/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Linfócitos T
6.
Hepatology ; 78(1): 150-166, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630995

RESUMO

BACKGROUND AND AIMS: The progression of chronic liver diseases towards liver cirrhosis is accompanied by drastic tissue changes. This study combines elaborate transcriptomic and histological methods aiming at spatially resolving the hepatic immune microenvironment in NAFLD (including NASH, primary sclerosing cholangitis, primary biliary cholangitis, and severe alcoholic hepatitis). APPROACH AND RESULTS: Human liver samples were subjected to RNA-sequencing (n=225) and imaging cytometry (n=99) across 3 independent patient cohorts. Liver samples from alcoholic hepatitis and primary biliary cholangitis patients were used for comparison. Myeloid populations were further characterized in corresponding mouse models. Imaging, clinical, and phenotypical data were combined for multidimensional analysis. NAFLD/NASH and primary sclerosing cholangitis disease stages were associated with loss of parenchymal areas, increased ductular cell accumulation, and infiltration of immune cells. NASH patients predominantly exhibited myeloid cell accumulation, whereas primary sclerosing cholangitis patients additionally had pronounced lymphoid cell responses. Correlating to disease stage, both etiologies displayed intense IBA1 + CD16 low CD163 low macrophage aggregation in nonparenchymal areas, with a distinct spatial proximity to ductular cells. Mouse models revealed that disease-associated IBA1 + hepatic macrophages originated from bone marrow-derived monocytes. Using an unbiased, machine learning-based algorithm, IBA1 in combination with hepatocyte and ductular cell immunostaining-predicted advanced cirrhosis in human NASH, primary sclerosing cholangitis, and alcoholic hepatitis. CONCLUSIONS: Loss of hepatocytes and increased ductular reaction are tightly associated with monocyte-derived macrophage accumulation and represent the most prominent common immunological feature revealing the progression of NAFLD, primary sclerosing cholangitis, primary biliary cholangitis, and alcoholic hepatitis, suggesting IBA1 + CD163 low macrophages are key pathogenic drivers of human liver disease progression across diverse etiologies.


Assuntos
Colangite Esclerosante , Hepatite Alcoólica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Colangite Esclerosante/patologia , Hepatite Alcoólica/patologia , Fígado/patologia , Cirrose Hepática/complicações , Macrófagos , Modelos Animais de Doenças
7.
J Hepatol ; 77(4): 1136-1160, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750137

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/patologia , Comunicação Celular , Fibrose , Humanos , Inflamação/patologia , Lipídeos , Fígado/patologia , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistas , RNA , Receptores Citoplasmáticos e Nucleares
8.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269812

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and its progressive form nonalcoholic steatohepatitis (NASH) comprise a spectrum of chronic liver diseases in the global population that can lead to end-stage liver disease and hepatocellular carcinoma (HCC). NAFLD is closely linked to the metabolic syndrome, and comorbidities such as type 2 diabetes, obesity and insulin resistance aggravate liver disease, while NAFLD promotes cardiovascular risk in affected patients. The pathomechanisms of NAFLD are multifaceted, combining hepatic factors including lipotoxicity, mechanisms of cell death and liver inflammation with extrahepatic factors including metabolic disturbance and dysbiosis. Nuclear receptors (NRs) are a family of ligand-controlled transcription factors that regulate glucose, fat and cholesterol homeostasis and modulate innate immune cell functions, including liver macrophages. In parallel with metabolic derangement in NAFLD, altered NR signaling is frequently observed and might be involved in the pathogenesis. Therapeutically, clinical data indicate that single drug targets thus far have been insufficient for reaching patient-relevant endpoints. Therefore, combinatorial treatment strategies with multiple drug targets or drugs with multiple mechanisms of actions could possibly bring advantages, by providing a more holistic therapeutic approach. In this context, peroxisome proliferator-activated receptors (PPARs) and other NRs are of great interest as they are involved in wide-ranging and multi-organ activities associated with NASH progression or regression. In this review, we summarize recent advances in understanding the pathogenesis of NAFLD, focusing on mechanisms of cell death, immunometabolism and the role of NRs. We outline novel therapeutic strategies and discuss remaining challenges.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibrose , Humanos , Inflamação/patologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
11.
Cancers (Basel) ; 13(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578800

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a rising chronic liver disease and comprises a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) to end-stage cirrhosis and risk of hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is multifactorial, but inflammation is considered the key element of disease progression. The liver harbors an abundance of resident immune cells, that in concert with recruited immune cells, orchestrate steatohepatitis. While inflammatory processes drive fibrosis and disease progression in NASH, fueling the ground for HCC development, immunity also exerts antitumor activities. Furthermore, immunotherapy is a promising new treatment of HCC, warranting a more detailed understanding of inflammatory mechanisms underlying the progression of NASH and transition to HCC. Novel methodologies such as single-cell sequencing, genetic fate mapping, and intravital microscopy have unraveled complex mechanisms behind immune-mediated liver injury. In this review, we highlight some of the emerging paradigms, including macrophage heterogeneity, contributions of nonclassical immune cells, the role of the adaptive immune system, interorgan crosstalk with adipose tissue and gut microbiota. Furthermore, we summarize recent advances in preclinical and clinical studies aimed at modulating the inflammatory cascade and discuss how these novel therapeutic avenues may help in preventing or combating NAFLD-associated HCC.

12.
Hepatology ; 73(5): 1967-1984, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32761929

RESUMO

BACKGROUND AND AIMS: Kupffer cells (KCs) are the resident intravascular phagocyte population of the liver and critical to the capture and killing of bacteria. Calcineurin/nuclear factor of activated T cells (NFAT) inhibitors (CNIs) such as tacrolimus are used to prevent rejection in solid organ transplant recipients. Although their effect on lymphocytes has been studied extensively, there are limited experimental data about if and how CNIs shape innate immunity, and whether this contributes to the higher rates of infection observed in patients taking CNIs. APPROACH AND RESULTS: Here, we investigated the impact of tacrolimus treatment on innate immunity and, more specifically, on the capability of Kupffer cells (KCs) to fight infections. Retrospective analysis of data of >2,700 liver transplant recipients showed that taking calcineurin inhibitors such as tacrolimus significantly increased the likelihood of Staphylococcus aureus infection. Using a mouse model of acute methicillin-resistant S. aureus (MRSA) bacteremia, most bacteria were sequestered in the liver and we found that bacteria were more likely to disseminate and kill the host in tacrolimus-treated mice. Using imaging, we unveiled the mechanism underlying this observation: the reduced capability of KCs to capture, phagocytose, and destroy bacteria in tacrolimus-treated animals. Furthermore, in a gene expression analysis of infected KCs, the triggering receptor expressed on myeloid cells 1 (TREM1) pathway was the one with the most significant down-regulation after tacrolimus treatment. TREM1 inhibition likewise inhibited KC bacteria capture. TREM1 levels on neutrophils as well as the overall neutrophil response after infection were unaffected by tacrolimus treatment. CONCLUSIONS: Our results indicate that tacrolimus treatment has a significant impact directly on KCs and on TREM1, thereby compromising their capacity to fend off infections.


Assuntos
Bacteriemia/etiologia , Imunossupressores/efeitos adversos , Células de Kupffer/efeitos dos fármacos , Transplante de Órgãos/efeitos adversos , Infecções Estafilocócicas/etiologia , Tacrolimo/efeitos adversos , Animais , Feminino , Citometria de Fluxo , Humanos , Imunossupressores/uso terapêutico , Células de Kupffer/fisiologia , Masculino , Staphylococcus aureus Resistente à Meticilina , Camundongos , Pessoa de Meia-Idade , Transplante de Órgãos/métodos , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos , Tacrolimo/uso terapêutico
13.
Hepatology ; 72(4): 1310-1326, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33090557

RESUMO

BACKGROUND AND AIMS: T cells from patients with primary sclerosing cholangitis (PSC) show a prominent interleukin (IL)-17 response upon stimulation with bacteria or fungi, yet the reasons for this dominant T-helper 17 (Th17) response in PSC are not clear. Here, we analyzed the potential role of monocytes in microbial recognition and in skewing the T-cell response toward Th17. APPROACH AND RESULTS: Monocytes and T cells from blood and livers of PSC patients and controls were analyzed ex vivo and in vitro using transwell experiments with cholangiocytes. Cytokine production was measured using flow cytometry, enzyme-linked immunosorbent assay, RNA in situ hybridization, and quantitative real-time PCR. Genetic polymorphisms were obtained from ImmunoChip analysis. Following ex vivo stimulation with phorbol myristate acetate/ionomycin, PSC patients showed significantly increased numbers of IL-17A-producing peripheral blood CD4+ T cells compared to PBC patients and healthy controls, indicating increased Th17 differentiation in vivo. Upon stimulation with microbes, monocytes from PSC patients produced significantly more IL-1ß and IL-6, cytokines known to drive Th17 cell differentiation. Moreover, microbe-activated monocytes induced the secretion of Th17 and monocyte-recruiting chemokines chemokine (C-C motif) ligand (CCL)-20 and CCL-2 in human primary cholangiocytes. In livers of patients with PSC cirrhosis, CD14hiCD16int and CD14loCD16hi monocytes/macrophages were increased compared to alcoholic cirrhosis, and monocytes were found to be located around bile ducts. CONCLUSIONS: PSC patients show increased Th17 differentiation already in vivo. Microbe-stimulated monocytes drive Th17 differentiation in vitro and induce cholangiocytes to produce chemokines mediating recruitment of Th17 cells and more monocytes into portal tracts. Taken together, these results point to a pathogenic role of monocytes in patients with PSC.


Assuntos
Colangite Esclerosante/imunologia , Monócitos/fisiologia , Células Th17/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Adaptadoras de Sinalização CARD/genética , Diferenciação Celular , Quimiocinas/biossíntese , Feminino , Humanos , Interleucina-1beta/fisiologia , Interleucinas/genética , Cirrose Hepática/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Cell ; 183(1): 110-125.e11, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32888431

RESUMO

During respiration, humans breathe in more than 10,000 liters of non-sterile air daily, allowing some pathogens access to alveoli. Interestingly, alveoli outnumber alveolar macrophages (AMs), which favors alveoli devoid of AMs. If AMs, like most tissue macrophages, are sessile, then this numerical advantage would be exploited by pathogens unless neutrophils from the blood stream intervened. However, this would translate to omnipresent persistent inflammation. Developing in vivo real-time intravital imaging of alveoli revealed AMs crawling in and between alveoli using the pores of Kohn. Importantly, these macrophages sensed, chemotaxed, and, with high efficiency, phagocytosed inhaled bacterial pathogens such as P. aeruginosa and S. aureus, cloaking the bacteria from neutrophils. Impairing AM chemotaxis toward bacteria induced superfluous neutrophil recruitment, leading to inappropriate inflammation and injury. In a disease context, influenza A virus infection impaired AM crawling via the type II interferon signaling pathway, and this greatly increased secondary bacterial co-infection.


Assuntos
Bactérias/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Animais , Feminino , Homeostase , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Neutrófilos/imunologia , Fagocitose/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Alvéolos Pulmonares , Transdução de Sinais , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
15.
JHEP Rep ; 2(3): 100094, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32280942

RESUMO

BACKGROUND & AIMS: High IgG levels are considered a hallmark of autoimmune hepatitis (AIH). A subgroup of patients with AIH has IgG within the normal range despite evidence of clinical disease activity. The clinical significance of this biomarker has not been explored. METHODS: In a European multicentre study we compared biochemical, clinical and histological features from patients with AIH and normal IgG-values at diagnosis to an age- and sex-matched control group of patients with typical AIH presenting with elevated IgG. Data were assessed at diagnosis, after 12 months of therapy and at last follow-up. RESULTS: Out of 1,318 patients with AIH, 130 (10%) had normal IgG at presentation. Histological and biochemical parameters at diagnosis, as well as treatment response, showed no difference between groups. Stable remission off treatment was achieved more commonly in the normal IgG group than in the typical AIH group (24 vs. 8%; p = 0.0012). Patients of the control group not only had higher IgG levels (29.5 ± 5.8 vs. 12.5 ± 3.2 g/L; p <0.0001), but also a higher IgG/IgA ratio (9.3 ± 6.9 vs. 5.4 ± 2.4; p <0.0001) at diagnosis. The IgG/IgA ratio only declined in patients with typical AIH and was no longer different between groups after 12 months (6.3 ± 4.3 vs. 5.5 ± 2.2; p = 0.1), indicating a selective increase of IgG in typical AIH and its suppression by immunosuppression. Autoantibody titres were higher in the typical AIH group, but not when controlled for IgG levels. CONCLUSIONS: Compared to AIH with typical biochemical features, patients with normal IgG levels at diagnosis (i) show similar biochemical, serological and histological features and comparable treatment response, (ii) appear to lack the selective elevation of serum IgG levels observed in typical active AIH disease, (iii) may represent a subgroup with a higher chance of successful drug withdrawal. LAY SUMMARY: A characteristic feature of autoimmune hepatitis (AIH) is an elevation of immunoglobulin G (IgG), which is therefore used as a major diagnostic criterion, as well as to monitor treatment response. Nevertheless, normal IgG does not preclude the diagnosis of AIH. Therefore, we herein assessed the features of patients with AIH and normal IgG in a large multicentre study. This study demonstrates that about 10% of all patients with AIH have normal IgG; these patients are indistinguishable from other patients with AIH with respect to biochemical markers, liver histology, disease severity and treatment response, but might represent a subgroup with a higher chance of remission after drug withdrawal.

16.
Br J Clin Pharmacol ; 86(7): 1406-1415, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32080881

RESUMO

AIMS: Drug-induced liver injury (DILI) is a heterogenous entity leading to liver damage. We have analysed the frequency, biochemical and histological patterns and clinical courses of DILI cases due to metamizole at our tertiary care centre in Hamburg, Germany. METHODS: Consecutive patients with DILI who presented to our clinic were analysed retrospectively. Causes of acute hepatitis other than DILI were excluded. RESULTS: In total, 154 DILI cases were admitted to our centre from 2008 to 2017. After phenprocoumon, metamizole was the second most frequent putative agent causing DILI (23 of all 154 DILI cases, 14,9%). The biochemical pattern on admission of metamizole-induced DILI cases was hepatocellular with median levels of alanine transaminase (779 U/L, 64-3532 U/L) by far exceeding median alkaline phosphatase levels (131 U/L, 42-578 U/L). In 17 of the 23 cases (74%) liver biopsy was performed. Moderate to severe inflammatory histological activity and severe centrilobular necrosis (>30%) was present in 76.5 and 35.3%, respectively. Metamizole was involved in 2 DILI cases progressing to acute liver failure, then receiving liver transplantation and still alive at time of assessment. Our data were supported by re-exposure in 4 patients. Furthermore, a database search for metamizole-induced liver injury in the European Medicines Agency's database identified about 300 reports on suspected metamizole-induced DILI in Europe. CONCLUSION: Elevation of liver enzymes or acute liver failure are not mentioned in the German drug label of metamizole as potential side effects. Our study reveals that in Germany and Europe, metamizole is a frequent and underrated agent causing DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Dipirona , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Dipirona/efeitos adversos , Europa (Continente) , Alemanha/epidemiologia , Humanos , Fígado , Estudos Retrospectivos
17.
J Exp Med ; 217(4)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978220

RESUMO

Every day, megakaryocytes produce billions of platelets that circulate for several days and eventually are cleared by the liver. The exact removal mechanism, however, remains unclear. Loss of sialic acid residues is thought to feature in the aging and clearance of platelets. Using state-of-the-art spinning disk intravital microscopy to delineate the different compartments and cells of the mouse liver, we observed rapid accumulation of desialylated platelets predominantly on Kupffer cells, with only a few on endothelial cells and none on hepatocytes. Kupffer cell depletion prevented the removal of aged platelets from circulation. Ashwell-Morell receptor (AMR) deficiency alone had little effect on platelet uptake. Macrophage galactose lectin (MGL) together with AMR mediated clearance of desialylated or cold-stored platelets by Kupffer cells. Effective clearance is critical, as mice with an aged platelet population displayed a bleeding phenotype. Our data provide evidence that the MGL of Kupffer cells plays a significant role in the removal of desialylated platelets through a collaboration with the AMR, thereby maintaining a healthy and functional platelet compartment.


Assuntos
Assialoglicoproteínas/metabolismo , Plaquetas/metabolismo , Galactose/metabolismo , Células de Kupffer/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Fagocitose , Animais , Anticorpos/imunologia , Assialoglicoproteínas/imunologia , Células Cultivadas , Voluntários Saudáveis , Humanos , Lectinas Tipo C/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo
18.
J Immunol ; 203(12): 3148-3156, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31685647

RESUMO

Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease that is believed to be driven by a CD4+ T cell response to liver Ags. However, the pathogenic function of CD4+ effector T cells in AIH is not fully understood. To characterize liver-infiltrating lymphocytes in AIH, we determined the cytokine production of infiltrating cells obtained from biopsy material by quantitative RT-PCR and flow cytometry. A cytokine quantitiative RT-PCR array of AIH specimens revealed that TNF was the most strongly upregulated cytokine, as compared with control livers. To confirm this finding, we determined the frequencies of TNF-producing CD4+ T cells in peripheral blood and in liver biopsy specimens in comparison with those of CD4+ T cells producing IFN-γ or IL-17. In AIH, TNF-producing CD4+ T cells were significantly expanded, both in blood and liver, whereas IL-17-producing CD4+ T cells were not. However, the majority of the TNF-producing CD4+ T cells in AIH also produced IFN-γ, suggesting that TNF producers might represent a pathogenic activation state of Th1 cells. Ag-specific stimulation of PBMC from AIH patients with the AIH-associated autoantigen SEPSECS resulted in significant TNF production only in patients manifesting SLA/LP autoantibodies targeting SEPSEC but not in healthy individuals who do not manifest this reactivity. Taken together, our findings indicated that TNF-producing CD4+ T cells are expanded in AIH, both in blood and in liver. TNF-producing CD4+ T cells in AIH seem to be aberrantly activated Th1 cells. Our findings provide a rationale for therapeutic efforts using TNF blockade in AIH.


Assuntos
Hepatite Autoimune/etiologia , Hepatite Autoimune/metabolismo , Fígado/inervação , Fígado/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Fatores de Necrose Tumoral/biossíntese , Adulto , Idoso , Aminoacil-tRNA Sintetases/imunologia , Autoantígenos/imunologia , Biomarcadores , Citocinas/biossíntese , Citocinas/genética , Feminino , Expressão Gênica , Hepatite Autoimune/diagnóstico , Humanos , Fígado/imunologia , Fígado/patologia , Testes de Função Hepática , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
19.
J Clin Invest ; 129(11): 4643-4656, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545300

RESUMO

Essentially all Staphylococcus aureus (S. aureus) bacteria that gain access to the circulation are plucked out of the bloodstream by the intravascular macrophages of the liver - the Kupffer cells. It is also thought that these bacteria are disseminated via the bloodstream to other organs. Our data show that S. aureus inside Kupffer cells grew and escaped across the mesothelium into the peritoneal cavity and immediately infected GATA-binding factor 6-positive (GATA6+) peritoneal cavity macrophages. These macrophages provided a haven for S. aureus, thereby delaying the neutrophilic response in the peritoneum by 48 hours and allowing dissemination to various peritoneal and retroperitoneal organs including the kidneys. In mice deficient in GATA6+ peritoneal macrophages, neutrophils infiltrated more robustly and reduced S. aureus dissemination. Antibiotics administered i.v. did not prevent dissemination into the peritoneum or to the kidneys, whereas peritoneal administration of vancomycin (particularly liposomal vancomycin with optimized intracellular penetrance capacity) reduced kidney infection and mortality, even when administered 24 hours after infection. These data indicate that GATA6+ macrophages within the peritoneal cavity are a conduit of dissemination for i.v. S. aureus, and changing the route of antibiotic delivery could provide a more effective treatment for patients with peritonitis-associated bacterial sepsis.


Assuntos
Fator de Transcrição GATA6/imunologia , Macrófagos Peritoneais/imunologia , Peritonite/imunologia , Sepse/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Animais , Feminino , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Peritonite/microbiologia , Peritonite/patologia , Sepse/microbiologia , Sepse/patologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Vancomicina/farmacologia
20.
Front Immunol ; 10: 1065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191516

RESUMO

Background: Natural Killer T (NKT) cells are CD1d-restricted innate-like T cells that can rapidly release stored cytokines upon recognition of lipid antigens. In mice, type I NKT cells seem to promote liver inflammation, whereas type II NKT cells seem to restrict hepatitis. Here, we aimed at characterizing the role of human type I and type II NKT in patients with autoimmune hepatitis (AIH). Methods: NKT cells were analyzed by flow cytometry in peripheral blood and liver of AIH patients and control groups. α-galactosylceramide-loaded or sulfatide-loaded tetramers were used to detect type I or II NKT cells, respectively. Hepatic CD1d was stained by in situ-hybridization of liver biopsies. Results and Conclusions: Type II NKT cells were more prevalent in human peripheral blood and liver than type I NKT cells. In AIH patients, the frequency of sulfatide-reactive type II NKT cells was significantly increased in peripheral blood (0.11% of peripheral blood leukocytes) and liver (3.78% of intrahepatic leukocytes) compared to healthy individuals (0.05% and 1.82%) and patients with drug-induced liver injury (0.06% and 2.03%; p < 0.05). Intrahepatic type II NKT cells of AIH patients had a different cytokine profile than healthy subjects with an increased frequency of TNFα (77.8% vs. 59.1%, p < 0.05), decreased IFNγ (32.7% vs. 63.0%, p < 0.05) and a complete lack of IL-4 expressing cells (0% vs. 2.1%, p < 0.05). T cells in portal tracts expressed significantly more CD1d-RNA in AIH livers compared to controls. This study supports that in contrast to their assumed protective role in mice, human intrahepatic, sulfatide-reactive type II NKT cells displayed a proinflammatory cytokine profile in patients with AIH. Infiltrating T cells in portal areas of AIH patients overexpressed CD1d and could thereby activate type II NKT cells.


Assuntos
Hepatite Autoimune/imunologia , Fígado/imunologia , Sulfoglicoesfingolipídeos/imunologia , Adulto , Idoso , Antígenos CD1d/análise , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/imunologia , Fenótipo , Receptores de Quimiocinas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...